Tech Paper 2021: This paper presents Dialog+, a deep-learning solution that enhances speech intelligibility in broadcast content, allowing user-adjustable dialogue levels even for traditional audio, and reports on large-scale field tests showing strong audience approval.
Abstract
Difficulties in following speech due to loud background sounds are common in broadcasting. Object-based audio, e.g., MPEG-H Audio solves this problem by providing a user-adjustable speech level. While object-based audio is gaining momentum, transitioning to it requires time and effort. Also, lots of content exists, produced and archived outside the object-based workflows. To address this, Fraunhofer IIS has developed a deep-learning solution called Dialog+, capable of enabling speech level personalization also for content with only the final audio tracks available. This paper reports on public field tests evaluating Dialog+, conducted together with Westdeutscher Rundfunk (WDR) and Bayerischer Rundfunk (BR), starting from September 2020. To our knowledge, these are the first large-scale tests of this kind.
Exclusive Content
This article is available with a Technical Paper Pass
Opportunities for emerging 5G and wifi 6E technology in modern wireless production
This paper examines the changing regulatory framework and the complex technical choices now available to broadcasters for modern wireless IP production.
Leveraging AI to reduce technical expertise in media production and optimise workflows
Tech Papers 2025: This paper presents a series of PoCs that leverage AI to streamline broadcasting gallery operations, facilitate remote collaboration and enhance media production workflows.
Automatic quality control of broadcast audio
Tech Papers 2025: This paper describes work undertaken as part of the AQUA project funded by InnovateUK to address shortfalls in automated audio QC processes with an automated software solution for both production and distribution of audio content on premises or in the cloud.
Demonstration of AI-based fancam production for the Kohaku Uta Gassen using 8K cameras and VVERTIGO post-production pipeline
Tech Papers 2025: This paper details a successful demonstration of an AI-based fancam production pipeline that uses 8K cameras and the VVERTIGO post-production system to automatically generate personalized video content for the Kohaku Uta Gassen.
EBU Neo - a sophisticated multilingual chatbot for a trusted news ecosystem exploration
Tech Papers 2025: The paper introduces NEO, a sophisticated multilingual chatbot designed to support a trusted news ecosystem.
